Intergenerational Risk Decision Making: A Practical Example

Andrew C. Kadak

National Academy of Public Administration

"No generation should needlessly, now and in the future, deprive its successors of the opportunity to enjoy a quality of life equivalent to its own."

Supporting Principles

- Trusteeship
- Sustainability
- Chain of obligation
- Precaution

No decision can be "final" but decisions need to be made.

Suggest a "rolling futures" approach with credible intragenerational standards

Repository Approach Proposal

- Design the repository to meet long term disposal to defensible standards
- License the repository for underground storage completely retrievable
- Monitor post fillup to validate computer performance models
- Decide whether spent fuel is a waste or not prior to closure if acceptable repository
- License for closure based on performance
- If not acceptable, use as underground storage facility until alternative disposal or usage is decided.

Yucca Mountain Example

- Trusteeship Manage wastes
- Sustainability use of nuclear to preserve fossil fuels for future generations
- Chain of Obligation two periods
 - Engineered Barrier Period 1000 years complete containment
 - Geological Period PRA for Design to reasonable standards
- Precautionary
 - Load repository
 - Assure real retrievability entire repository
 - Monitoring if predictions not valid keep underground storage find alternative
- Rolling Future allow for changes in technology and uses of spent fuel – no perfect 1 million year solution - make standards to assess costs and benefits and alternative uses of money for commensurate reduction of societal risk.

Intergenerational Considerations Affecting the Future of Nuclear Power:

Equity as a Framework for Assessing Fuel Cycles

Behnam Taebi Delft University

Andrew C. Kadak
Massachusetts Institute of Technology

Intergenerational Criteria Defined as a set of Moral Values built around the principle of Sustainability.

They contribute to the environment and humankind's safety, security, and overall welfare of society in terms of sustainability

APPENDIX: SCORECARD AND EXPLANATION OF IMPACTS AND RANKINGS

IMPACTS	ALTERNATIVES							
	Current Practice		Direct Storage		Trnasmuter		LWR-FR (Breeder)	
	Gen 1	Gen 2-n	Gen 1	Gen 2-n	Gen 1	Gen 2-n	Gen 1	Gen 2-n
Environmental Friendliness/Public Safety								
Mining, milling, enrichment, fuel fabrication	High		High		Medium		Low	
Transport of spent and recycled fuel	Low		Medium		High		High	
Reactor operation and decommissioning period	Low	1,000	Low	1,038	High	High	High	High
Spent fuel storage	High	High	Low	Low	High	High	High	High
Final disposal of spent fuel and other waste	Indifferent	High	Indifferent	High	Indifferent	Low	Indifferent	High
Reprocessing - applying fast reactors	×		×		Indifferent		Indifferent	
Security								
Uranium enrichment	High	CV. SOUTH TO CVID TO VID	High		Medium		Low	
Reactor operation and decommissioning period	Low	Low	Low	Low	High	High	High	High
Spent fuel storage	Medium	Medium	Low	Low	Low	Low	High	High
Final disposal of spent fuel and other waste	Medium	Mediam	Medium	Medam	Low	Low	High	High
Reprocessing - applying fast reactors	×		×		Medium		High	
Resourse Durability								
Consuming uranium	High		High		Medium		Low	
Energy production with uranium (benefit)	Low	Low	Low	Low	Medium	Medium	High	High
Retrievable stored/ disposed of spent fuel (benefit)	High	High	High	Pitch	Medium	Medam	Low	Low
Economic Viability								
Safety measures costs until the end of retrieval	Indifferent	Indifferent	Indifferent	Indifferent	Indifferent	Indifferent	Indifferent	Indifferent
Building reprocessing plants and fast reactors	×		×		medium		High	
Technological Applicability								
Geological disposal	Indifferent		Indifferent		Indifferent		Indifferent	
Applying reprocessing and fuel fabrication	×		×		High		High	
Applying fast reactors	×		×		High		High	

Legend

Least Favorable

Intermediate/Indifferent

